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SUMMARY 

the design of swept frequency spectrum analyz 

DESIGN EQUATIONS OF SWEPT FREQUENCY SPECTRUM ANALYZERS 

rs a r e  presented 
with the intended application being in-flight analysis of vibration data. 
is given to developing the optimum combination of the frequency-time function and the 
analyzing filter bandwidth. 
acceptable resolution and accuracy. 
discussed, and the frequency-time equation is developed for each-of these three types. 
The analyzer using a second-order sweep rate is shown to have the shortest sweep time, 
but it requires an expanding bandwidth filter and a decreasing averaging-time power de- 
tector. The linear sweep rate analyzer is shown to require less  bandwidth per channel 
and is much less complex. The constant sweep rate analyzer is shown to have either very 
long sweep times o r  poor frequency resolution; however, all three types of analyzers 
have bandwidth savings over real-time transmission of wide-band data. 

Primary emphasis 

The main criterion used is minimum sweep time coupled with 
Constant, linear, and second-order sweep rates are 

I NT RO D UCTlON 

A continuing problem in communication system design is transmitting many channels 
of wide-band data over a limited bandwidth transmission system. 
critical in transmission from a spacecraft or a launch vehicle, where increased band- 
width requires more weight and power, and consequently, reduced payload. The partic- 
ular problem that led to this investigation was the need to transmit from launch vehicles 
the results of a large number of vibration measurements. 

Currently, NASA uses primarily the IRIG FM/FM (Inter-Range Instrumentation 
Group) standard telemetry format for the transmission of analog vibration signals from 
vehicles to the ground, and an extensive network of ground stations has been built to re- 
ceive data in this format. Often, the number of vibration measurements desired exceeds 

The problem is most 
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the capacity of the IRIG FM/FM telemetry system. There are several ways to solve this 
problem. One method is to change the transmission system. Two transmission systems 
capable of transmitting many channels of real-time, wide-band data from space vehicles 
a r e  DSB/FM (double-sideband/frequency modulation (ref. 1)) and SSB/FM (single- 
sideband/frequency modulation (ref. 2)). Another alternative is to use some form of data 
reduction before the data is transmitted. On-board data reduction reduces the transmis- 
sion bandwidth required and still allows the use of the IRIG FM/FM transmission system 
for the resulting low bandwidth channels. Spectrum analysis is the method of pretrans- 
mission data reduction that is considered in this report. 

Spectrum analysis of a signal often gives sufficient information about the real-time 
signal. In many cases, the final form of vibration data is a plot of the power density of 
the signal as a function of frequency (or power spectral density). This form of the re- 
sult is important because it can show the frequencies present in the vibration source as 
well as the amplitudes and frequencies of the dominant vibration modes of the vehicle 
structure. However, the process of spectrum analysis is irreversible since no phase 
relations between the frequency components of a given signal a r e  obtained; thus, spectrum 
analysis loses the actual time history of the vibration. In addition, relative phase meas- 
urements between two time functions cannot be made by comparing their spectrums. Even 
with these limitations spectrum analysis remains useful. 

Theoretical work in spectrum analysis (refs. 3 and 4) was followed by the consider- 
ation of swept frequency spectrum analyzers with a constant sweep rate and a constant 
bandwidth filter (refs. 5 and 6). Commercially available airborne spectrum analyzers 
are of this type; however, they have the drawbacks of poor resolution and/or long sweep 
times. For random data, a spectrum analyzer with a linear sweep rate has better reso- 
lution and/or shorter sweep time than the constant sweep rate analyzer. 
rate analyzers have been used (to the authors' knowledge) only as ground equipment. A 
spectrum analyzer with a sweep rate proportional to frequency squared was mentioned by 
Bendat (ref. 7), but the frequency-time function was not derived. 

In this report, the basic theoretical background for spectrum analysis is presented. 
The frequency-time functions a r e  derived for the various types of swept frequency spec- 
trum analyzers. The development progresses from the simple case of a constant sweep 
rate analyzer operating on periodic signals through to the progressively more complex 
operations of constant, linear, and second-order sweep rate systems analyzing random 
signals. For each type of frequency sweep, the attainable performance, as given by the 
frequency-time function, is compared with the following desired specifications for air- 
borne spectrum analyzers (the list was compiled from discussions with those who use and 
reduce vibration data): 

The linear sweep 
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Frequency range . . . . . . . . . . . . . . . . . . . . . .  near zero to several kilohertz 
Allowable frequency e r ro r .  . . . . . . . . .  *lo percent of the frequency being analyzed 
Minimum resolvable bandwidth . . . . . . .  *lo percent of the frequency being analyzed 
Allowable spectrum amplitude e r ror  . . . . . . . . . . . . . . . . . . . . .  *lo percent 
Sweep time . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  of the order of seconds 

These desired specifications are shown to be incompatible and cannot be obtained in 
the analysis of random data. Even periodic data can only be analyzed with less than the 
desired accuracy in such a short sweep time. 

In those cases where long sweep times o r  reduced accuracies a r e  tolerable, the in- 
flight spectrum analyzer may be used. The bandwidth savings resulting from the use of 
spectrum analyzers in these cases is discussed in the concluding section of this report. 

A limitation of the swept frequency spectrum analyzers discussed in this report is 
that it is not practical to extend their lower frequency limit to "near zero, * *  as listed in 
the desired specifications previously given. The frequency- time equations derived in this 
report show that low-frequency spectrum analyzers have extremely long sweep times and 
require very narrow filters to obtain good frequency resolution. 
spectrum analyzers have a practical low-frequency limit on the order of 100 hertz. 
low-frequency part of the signal is better handled by separate transmission of that portion 
of the time-varying signal followed by spectrum analysis on the ground. 

The swept frequency 
The 

BACKGROUND TO PROBLEM 

Before proceeding to the details of the analysis, some necessary background infor- 
mation will be discussed. 

Genera I B ac kg r ou n d 

Characteristics of expected signals. - Since this report is concerned with the specific 
problem of transmitting vibration data, the assumed characteristics of such data will be 
discussed. 
source. 
frequency content of the resulting vibration. The mechanical Q, or sharpness of reso- 
nance, is assumed to be less than 10; thus, if the spectral peaks are to be resolved, 
analyzing filters with values of electrical Q much greater than 10 would be required. 
Moreover, the maximum mechanical Q is assumed to be independent of the resonant 
frequency. 
frequency increases. 

First, the source causing the vibration is assumed to be a random noise 
The mechanical system coupled to this source acts as a filter that shapes the 

Thus, the bandwidths of the resonances become progressively wider as the 
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In order to obtain meaningful data, the signal being analyzed must be stationary 
during the time of observation; that is, the probability distribution of the signal level 
must remain constant. The vibration signal will remain stationary as long as the source 
causing the vibration remains statistically invariant. Examples of events causing nonsta- 
tionarity would be turning on or  turning off a rocket engine, changes in thrust, or 
changes in air turbulence surrounding the vehicle. 

For the swept frequency spectrum analyzer, the minimum period of stationarity of 
the signal limits the total sweep time. When the signal is nonstationary, the spectrum 
changes with time. Thus, for the swept frequency spectrum analyzer the signal must be 
stationary for times on the order of the total sweep time. The minimum period of sta- 
tionarity can be somewhat less than the total sweep time since interpolation between suc- 
ceeding spectrums can give estimates of the spectrum between sweeps. 

Types of spectrum analyzers. - There are two common types of analog spectrum 
analyzers. The simplest method of spectrum analysis is to measure the power from each 
filter in a group of band-pass filters whose center frequencies are spaced so that the filter 
pass bands cover the frequency range of the input signal. The power output of each filter 
is an approximation to the average power spectral density of the signal within the filter 
pass band. The swept frequency spectrum analyzer is the second common type of spec- 
trum analyzer and is the subject of this report. Its operation will be discussed in de- 
tail. 

The analyzer shown in figure 1 is one of several ways of implementing the swept fre- 
quency analyzer. The frequency diagram is shown in figure 2. Basicaiiy, Ge a n a i m  in 
figure 1 translates the signal spectrum to a higher frequency using suppressed carr ier  
amplitude modulation. At the high frequency, a single band-pass filter selects a narrow 
band of frequencies corresponding to a similar narrow band of frequencies of the input 

band-pass 
Signal Mixer filter 9 

Power spec- 
detector -trum 

I 1 swept frequency 
oscillator 

Figure 1. - Block diagram of typical swept frequency spectrum analyzer. 

,-Analyzing 
,-Signal / filter f l *A  ,’ spectrum 

0 fL fH fs fc 
Frequency 

Figure 2 - Frequency d i i r a m  of typical swept frequency spectrum analyzer. 
Lowest frequency to be ahalyzed fL; highest frequency to be analyzed fH; 
mixing frequency fs; center frequency f,. 

spectrum. A sample of the power out- 
put of the filter is an approximation to 
the power spectral density within the 
corresponding signal frequency incre- 
ment. The filter is effectively swept 
through the signal spectrum by sweep- 
ing the mixing frequency fs. A disad- 
vantage of this analyzer is that both the 
filter and the power detector must have 
time to change their output values as 
they are swept through the spectrum. 
A major objective of this report is to 
show that the proper choice of the time 
dependence of the frequency sweep will 
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optimize the sweep time and the resolution for. the swept frequency spectrum analyzer. 
Before deriving the frequency-time equations for the constant, the linear, and the second- 
order sweep rate spectrum analyzers, some of the basic theory of spectrum analysis will 
be presented. 

T h eo r et ica I B ac kg r o u n d 

The basic restrictions on swept frequency spectrum analysis will be shown by first 
considering the spectrum analysis of periodic signals. Then the more complex case of 
analysis of random signals will be considered. 

Spectrum analysis ~~~~ of periodic __ signals. - Periodic signals are representable by a 
Fourier series of harmonically related sinusoidal waves. The basis for such representa- 
tion is well known and will not be discussed here (see ref. 8 for a discussion of Fourier 
series). 

constant with time. Such a spectrum may be resolved by a swept frequency spectrum 
analyzer with a sharp band-pass filter whose bandwidth is less than the minimum spacing 
between frequency components of the spectrum. Thus, 

The spectrum for a periodic signal has discrete components whose amplitudes a r e  

1 Bf < - 
TP 

where 

Bf effective filter bandwidth (bandwidth of the ideal rectangular filter that passes the 
same power as the real filter when both are  excited by white noise) 

period of the signal 
TP 

Furthermore, the sweep rate of the analyzer must be slow enough to allow the filter 
response to come up to almost fu l l  value before the analyzer moves on to another fre- 
quency. A band-pass filter excited by a sinusoidal signal a t  its center frequency has an 
output response envelope with a time constant given by 

1 Tc =- 
mBf 

where Tc is the time constant of response. 
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Also, the output of the filter must be measured by a detector whose averaging time is 
long compared with the period of the filter output, which is a sine wave at the filter center 
frequency. Thus, the averaging time is given by 

1 Td >> - 
fC 

(3) 

where 

Td detector averaging time 

fc filter center frequency 

Using equations ( l ) ,  (2), and (3), one can design a spectrum analyzer for periodic signals. 
Spectrum analysis of random signals. - The measurement of the spectrum of a ran- 

dom signal is not as straightforward. By its nature, a random signal has no periodicity, 
its value as a function of time cannot be precisely predicted, and, at best, only a prob- 
ability distribution for its values can be specified. Analyzing such functions requires 
some of the techniques of generalized harmonic analysis and probability theory. A brief 
introduction to the required techniques follows (for a thorough discussion see refs. 9 to 
11. ). 

The power spectral density (or mean square spectral density) of a stationary random 
function of time is defined as the Fourier transform of the autocorrelation function R(T). 
Let x(t) be the random function. Then 

T 
lim 1 x(t) x(t+T)dt 
T - t m  % /I R(T) = 

and the power spectral density S(f) is given by 

(Symbols a re  defined in the appendix. ) The function S(f) has the property that 

T Imm S(f)df = Mean square value of x(t) = t:m -$ x2(t)dt 

(4) 

Also, 
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2 p  S(f)df = Pab (7) 

where Pab is the average power in x(t) contained between frequencies fa  and fb, and 
between frequencies -fa and -fb, where fb  > f > 0. Lf S(f) is nearly constant between 
fa  and fb, for example sab(f), then Sab(f) may be approximated by 

a -  

where the caret above the S indicates that this is an estimated value. 

positive and negative frequencies. 
usually considered one sided (nonzero only for positive frequencies). Hereinafter, the 
spectral densities will be considered one sided. 

The spectral density previously defined is two sided; that is, S(f) is nonzero for both 
In engineering applications, spectral densities a re  

Equation (8) becomes 

L. 'ab s (f) = ___ ab 
f b  - fa 

(9) 

This equation is the basis of the most common method of spectral analysis, the use 
of a narrow band-pass filter to measure the power in x(t) between the frequencies fa  
and fb' If the effective filter bandwidth is Bf, then 

- 
where Pab is the average power out of the filter whose effective bandwidth is Bf; that 
is, 

where xf(t) is the output of the filter. 

case yield the following expression for the exact spectral density: 
Rewriting equation (lo), incorporating equation (ll), and considering the limiting 
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T 
S(fc) = lim lim 1 $(t)dt 

Bf-0 T - L ~  BfT 

where 

center frequency of the filter 

exact value of the power spectral density at frequency fc 
fC  

S(fc) 

For practical reasons, Bf cannot go to zero; however, a small value of Bf will 

The estimated value of S(fc) can be written as 
give a close approximation as long as T is sufficiently large. 

* T 
S(fc) = -!-/ xf2(t)dt 

BfT 0 

In words, $(fc) is the estimate of the average power spectra density in a andwidth Bf 
centered about fc. G(fc) is an unbiased estimator of the spectral density at fc  only if 
the spectrum is constant in the bandwidth Bf. (However, for nonflat spectrums, 6(fc) is 
an unbiased estimator of the average spectral density within the bandwidth B . ) Since 

*f 
&fc) is only an estimate of the true value of S(fc), the measured values of S(fc) will have 
statistical variation about their average value. 

When equation (13) is implemented, T is the averaging time of the power detector on 
the output of the filter. If the power detector implements equation (11) for finite T 
through an integrate and reset mechanism, true averaging is performed and T is the 
time between integrator resets. However, if a resistance-capacitance averaging circuit 
is used, T is two times the RC time constant (ref. 7, section 4). 

estimates of the spectral density. To determine the probability distribution of $(fc) con- 
sider the following: 

(1) From sampling theory, it can be established that the maximum number of inde- 
pendent samples obtainable from a band-limited white noise signal of bandwidth Bf and 
duration T is n = 2BfT (ref. 12). 

of the chi-square random variable with N-1 degrees of freedom, where N is the num- 
ber of samples taken to determine the sample variance (ref. 13). Specifically, 

The probability distribution of &fc) will indicate the expected range of values of these 

(2) The variance estimate of a normal distribution with zero mean value is a function 

(14) 
2 2 

2 
S 

U 

- (N- l )  = XN- 1 
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where 

S sample variance 

a true variance 

XN- 1 chi-square random variable with N-1 degrees of freedom (the chi-square distri- 
bution is tabulated in statistical tables) 

(3) For certain types of random functions, those which satisfy the quasi-ergodic hy- 
pothesis (ref. 11, ch. 7), the time average of the function equals the ensemble average; 
that is, 

where p[x(t)] is the probability distribution of x(t). Equation (15) states that the mean 
square value of x(t) equals the second moment of x(t). The random functions considered 
will be assumed to satisfy the quasi- ergodic hypothesis. 

(4) For a random variable x(t), 

E[x 2 (t)] = Var x(t) -I- {E[x(t)]I2 

(24-4 
Second Variance Mean value 
moment of x(t) of x(t), quan- 
of x(t) tity squared 

Applying equation (6) and steps (l), (2), (3), and (4) leads to the following conclusion: 
The power measured at  the output of an ideal band-pass filter fed by white noise is an 
estimate of the variance of the band-limited white noise (because the noise has zero mean 
value), and thus the power is a function of chi-square with n- 1 or 2BfT- 1 degrees of 
freedom. The filter power is assumed to be measured using an averaging time T. 

Therefore g(fc) is given by 

The probability of &fc) being within a certain interval of S(fc) can be calculated as fol- 
lows: 
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Let 

PIS1 < - $(fJ < - s2] = l-a! 

where 

P[a < - -  y < b] probability of a < - -  y < b 

1- a! desired confidence level 

to be determined S1’ s2 

From equations (17) and (18) 

Let 

where X1 is the point of the x i - l  distribution that has a / 2  area to the left and X2 is 
the point that has a!/2 area to the right (X1 and X2 can be found in tables of the chi- 
square distribution). Then, from equations (19) and (20) 

If we now define the normalized power spectral density estimate as S(fc)/S(fc), the fol- 
lowing equation results: 
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This equation, together with a table of the chi-square probability distribution, can be used 
to determine the normalized power spectral density at the tabulated confidence levels. 

As an example consider a = 20 percent 

Bf = 10 Hz 

T = 1.55 sec 

Then, the confidence level 1-a is 80 percent, and 

n-1 = 2BfT-1 = 31-1 = 30 

The values from x tables with a = 20 percent a r e  
(30) 

X1 = 20.60 

X2 = 40.26 

Thus 

P 0.686 < - I -  
For this numerical example, the probability of the measured spectral density lying in the 
interval [O. 686 S(fc), 1. 34 S(fc)] is 80 percent. 

It is unwieldy to use equation (22) to estimate the interval into which i(fc)/S(fc) f a l l s  
1-a percent of the time. A much simpler expression is obtained by using the normal ap- 
proximation to the chi-square distribution. For n-1 > 30, the chi-square distribution is 
approximated very closely by the normal distribution with mean ,u and standard devi- 
ation cr: 

- 

Let 
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where 

w is the normal random variable, with mean p and standard deviation u. 

One can find in normal probability tables the values of q that satisfy 

P[-q <_ z 5 q] = 1-a! 

where z is the standardized normal random variable ( p  = 0 and o = 1). Now, 

and equation (25) becomes 

P[-q 5 w-I,L U < - q 1 = 1-a! 

Using equations (23) and (24) in equation (26) results in 

or 

P 

where the percent e r ror  E is 

J W,) 
S(fJ - 

l - € < - < l + E  - =1-a! 
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Figure 3. - Percent error as a function of the degrees of freedom for various 
confidence levels using the normal approximation to chi-square distribution 
(eq. (27)). 

For BfT >> 1 

Equation (27) is to be interpreted to mean that the normalized values of the estimated 
spectral density will lie in the interval [(l - E ) ,  (1 + E)] approximately 1-a! percent of 
the time, with E as given by equation (28). 

Equation (27) is plotted in figure 3. 
graph gives only an approximation to the true confidence interval and is meant to be used 
as a general guide. 
a! = 0. 50 and 11. 8 percent for a! = 0.05.  If the normal approximation to the chi-square 
distribution is used in the previous numerical example, the following values a re  obtained: 

In the region to the left of (2BfT-1) = 30, the 

For (2BfT-1) = 30, the interval limits a r e  accurate to 1.1 percent for 

7 = 1.28 

and 

1.33 = 80 percent 1 
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which agrees with the limits obtained previously within about 2.3 percent. 

on the estimated spectral density when a confidence level is given. 
BfT, equations (27) and (28) may be used. 

analyzing filter did not enter into the analysis for random signals. 
the requirement that a number of independent samples of the power level be taken in each 
frequency interval. 
have had ample time to change from one level to another. Thus, taking 2BfT-1 independ- 
ent samples in each frequency interval guarantees that the filter response time has been 
exceeded many times. 

analyzers will be discussed. 

In summary, equation (22) is the exact expression used to obtain a confidence interval 
For large values of 

The reader may recall equation (2) and might wonder why the response time of the 
The answer lies in 

If the samples are to be truly independent, the filter output must 

Now that sufficient background information has been introduced the design of spectrum 

DESIGN 

The theory of swept frequency spectrum analyzers will be applied first to the design 
for periodic signals. Then the theory will be applied to random signals, which are  rep- 
resentative of flight vibration data. 

Design for Periodic Signa ls  

For periodic signals, there is no statistical uncertainty in the time function and equa- 
tions (l), (2), and (3) apply: 

1 Bf <- 
TP 

1 Tc = - 
“Bf 

1 Td >> - 
fC 

Equation (1) is satisfied by choosing a narrow band-pass filter as the analyzing filter. 
Equation (2) is satisfied by requiring each Fourier component to remain in the filter 
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long enough to allow the filter to come up to nearly f u l l  response. Let the sweep rate of 
the analyzer be such that in time NITc the filter moves across a frequency span of width 
Bf (N is a numerical constant). If N1 = 3, the filter will be at approximately 95 percent 1 
of its f u l l  value as the Fourier component leaves the filter. For a constant sweep rate, 

- = K1 
dt 

where 

fi  signal frequency being analyzed 

- sweep rate 
dt 

K1 sweep rate constant 

Sweeping at a rate slow enough to allow adequate filter response and yet having minimum 
sweep time requires that 

dt 

Thus , 

2 
Bf - mBf 

K1=- -- 
NlTC N1 

2 
Bf - mBf 

K1=- -- 
NlTC N1 

Solving equation (30) subject to fi(0) = fL, where f L  is the lowest frequency to be ana- 
lyzed, yields 

fi(t) = Klt + f L  (33) 

The total sweep time ts may be found by using fi(ts) = fH, where fH is the highest fre- 
quency to be analyzed, in equation (33). Then solving for ts gives 
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Equations (32), (33), and (34) characterize the constant sweep rate spectrum analyzer for 
periodic signals. 

The restrictions imposed by equation (3) have not yet been incorporated into the 
design equations. Assume that the filter center frequency fc in a swept frequency ana- 
lyzer with modulation is greater than 10 kilohertz. Then, from equation (3), the detector 
averaging time must be much greater than 100 microseconds. This criterion is easily 
met and in practical cases imposes no further restrictions on the sweep rate as given by 
equation (32). 

straightforward. A filter bandwidth Bf is chosen to give what the user considers to be 
adequate resolution, with equation (1) used as a guide. The sweep rate is given by equa- 
tion (32), the frequency-time function to be implemented by a variable frequency oscil- 
lator is given by equation (33), and the total sweep time is given by equation (34). 

2 
2 total sweep time in equation (34) is inversely proportional to Bf . As a numerical ex- 

ample consider the following: 

The design of a constant sweep rate spectrum analyzer for periodic signals is 

Notice in equation (32) that the sweep rate is directly proportional to Bf, while the 

Bf = 10 HZ 

fH = 2000 HZ 

f L  = 100 HZ 

Choose 

Then, 

N1 = a 

K1 = 100 Hz/sec 

fi(t) = loot + 100 

t = 19 sec 
S 
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This example has good resolution but a fairly long sweep time. If Bf were expanded to 
20 hertz, the total sweep time would be only 4.8  seconds. The resolution would not have 
been degraded significantly; however, the system still would not meet the desired speci- 
fications listed in the INTRODUCTION because the minimum resolvable bandwidth would 
have been increased to 20 percent of the bandwidth center frequency at fL. 

Note that this,analysis only applies to periodic data where there is no statistical un- 
certainty in the filter output. Spectrum analyzers for random data are discussed in the 
next section. 

Design for Random Signals 

Basic sweep rate equation. - Consider analyzing a spectral peak of width Bn with a 
filter of width Bf. First, to limit the amplitude error  to E with a confidence level 1-a, 
the filter must be entirely within the peak Bn for a time T determined from 

The use of this equation assumes that 2BfT-1 is sufficiently large that the normal ap- 
proximation to the chi-square distribution may be used. 

yields approximately the same results as moving the filter through it in discrete steps 
(ref. 7). 
in a time T and still remain entirely within the peak for the duration T. Thus, 

Secondly, it can be shown that continuously sweeping a filter through a spectrum 

From these considerations the filter can only be swept Bn - Bf in frequency 

dfi Afi Bn - Bf 
dt A t  T 

- - ---- (3 5) 

This is the basic sweep rate equation. 
Optimization of the filter bandwidth. - For in-flight vibration data the mechanical Q 

was  assumed to be independent of the resonant frequency. Thus, if  the minimum'resolv- 
able peak with center frequency fi  is defined as Bn, then the following equation results 
from the universal resonance curve: 

Bn=- 'i 

Qmax 

I 
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Clearly, if a filter of bandwidth Bf is to resolve a spectral peak of width Bn, then Bf 
must be less than Bn. Let 

Bf = C Bn (37) 

where C is a constant to be determined. For a fixed bandwidth filter 

Bf=C(B,) =- f L  

min Qmax 

since the filter must be able to resolve a spectral peak at the frequency fL. Consider 
the optimum value for Bf or  C. This means given E and q find Bf such that dfi/dt 
is a maximum; that is, solve for 

Lo; 0 
dBf dt 

and 

&(E!) < o  
dBf2 dt 

Solving equation (28) for T and substituting in the basic sweep rate equation yield 

dfi (Bn - Bf)2BfE 2 
- - - -  

2 2  27 + E 
dt 

Now 

2 

= o  

(39) 

Thus, 
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Since 

2 

2 2  
““0 = - 46 < o  

dt 2q + E  dBf 

the sweep rate is truly a maximum. 

blurring error  shows the apparent increase in bandwidth to be comparable to the resolu- 
tion and the frequency accuracy as given in the list of desired specifications (p. 3). For 
Bf/Bn = 1/2 (the optimum ratio shown above), Ratz (ref. 6) showed that if  a fair ly  sharp 
filter is used, the apparent increase in bandwidth is about 10 percent. 

Note that C is a constant independent of E and 7. 
This optimization of Bf/Bn ignores blurring error.  However, consideration of the 

Appl k a t  ion 

Linear sweep (analyzer I). - Using the basic sweep equation 

dfi - Bn - Bf 

dt T 
- -  (35) 

the desired types of sweeps can be generated. Assume Bn, Bf, and T fixed. Thus, 

T QmmT dt 

or 

fLt 

2QmaxT 
+ fL  f .  = 

1 

‘The blurring error  is defined by Ratz (ref. 6) as an apparent increase in the band- 
width of the spectral peaks, the increase being due to the nonzero bandwidth of the filter 
and the shape of the transfer function. 
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This equation is for a linear sweep spectrum analyzer, which for brevity is called ana- 
lyzer I in this report. Such a system has constant frequency resolution rather than 
constant-percent frequency resolution; thus, when analyzing vibration data, much time is 
wasted scanning the high-frequency end of the spectrum. 

Bf remains fixed, then the sweep rate equation becomes 
Nonlinear sweeps (analyzers 11 and m). - If Bn = fi/Q- as previously stated and 

Bf 
fi -- 

_ -  ai - Qmax 
dt T 

or 

t 

In this case the frequency is an exponential function of time. Thus the system is nor- 
mally called an exponential sweep spectrum analyzer; however, it  is called analyzer I1 
in this report. 

As stated previously, this system is optimum for a fixed bandwidth filter and 
Bn = fi/Qmax; however, the filter bandwidth is optimum only at fi = fL, where 
Bf =(Bn)min/2. Thus at the high end of the spectrum time is wasted because the filter is 
too narrow. This leads to the following considerations. Assume the existence of a vari- 
able bandwidth filter (ref. 14). Then the optimum filter bandwidth is 

Again the sweep rate equation is 

dfi Bn - Bf 

dt T 

However, Bf and T are no longer constants; hence, Bf and T must be substituted 
into the sweep rate equation in terms of fi. Using equation (28) and Bf = fi/2Qmax 
yields 
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dt ( 4 q 2 + 2 €  2 ) 
Qmax 

or 

f .  = f L  
2 1 

fLE  t 
1 -  - 

Qmax 2 (4q2+2E 2 ) 

This system will be subsequently designated analyzer III. 
2 proportional to f i .  

ample with 

Note that the sweep rate is 
For a comparison of the above systems consider the following ex- 

Bf = 5 Hz 

fL = 100 HZ 

fH = 2000 H Z  

E = 10 percent 

1-cr = 90 percent 

From the normal distribution curve and the preceding value for 1-0, q = 1.64 in equa- 
tion (28); then substituting E = 10 percent into equation (28) yields T = 54. 2 seconds. 
Solving equations (40), (41), and (42) for the sweep time in all three systems yields the 
following equations: 

Analyzer I: 

(fH - fL)T 

Bf 

(fH - f ~ ) ( % ~  + E  2 

2Bf 2 2  E 

- t =  - 
S (43) 

2 1  



Analyzer II: 

Analyzer 111: 

T In f~ - BfQmax 

f~ - BfQmax 
ts = Qmax 

2 26 Bf 
- 

f L  - BfQmax 
(44) 

Substituting the appropriate values of fH, fL, T, Bf, Qmax , r ] ,  and E into equations 
(43), (44), and (45) yields 

ts = 20 600 sec for analyzer I 

ts = 1980 sec for analyzer II 

ts = 1030 sec for analyzer III 

The nonlinear sweep systems have much shorter sweep times than the linear system; 
however, none a r e  feasible for real-time analysis of in-flight vibration data with the ac- 
curacy and sweep time requirements given in the INTRODUCTION. Clearly, i f  ts is to 
be on the order of seconds, then accuracy, resolution, and confidence must be sacrificed. 
The following example was  chosen to show to what extent the requirements must be de- 
graded to obtain sweep times on the order of seconds. Assume 

r] = 0.84 (i. e.) 1-a! = 60 percent 

fL = 100 HZ 

fH = 2000 HZ 

Qmax = 5 

E = 40 percent 
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For analyzer I 

ts = 91.6 sec 

For analyzer I1 

ts = 8.9 sec 

For analyzer III 

t = 4.6 sec 
S 

In the first numerical example, the value for the degrees of freedom is 540; so there 
is no doubt about the normal distribution being a good approximation to the chi-square dis- 
tribution. 
mation gives 

In the second example there a r e  9 degrees of freedom. The normal approxi- 

1 [ -  S(fc) - 

5fc) 
P 0.60 < - < 1.40 = 0.60 

The chi-square distribution gives 

< 1.36 = 0.60 P 0. 598 <- 1 [ -  S(fc) - 

Qfc) 

In view of the fact that E and (Y have been chosen to be 40 percent, the agreement be- 
tween the normal approximation and the chi-square distribution is more than adequate. 

BANDWIDTH REQUIRED FOR TRANSMISSION OF SPECTRUMS 

S i ng l e  Spec t rum Ba ndwidt  h Requ i remen t  

Transmitting the spectrum of a signal rather than transmitting the time function will 
lead to a considerable saving in bandwidth. 
a resistor-capacitor (RC) averager on the power detector. Then, according to the dis- 
cussion following equation (13), RC = T/2. 

Consider an airborne spectrum analyzer with 

But according to equation (28) 
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2 2  27 + E  
n 

T =  
2Bf E ' 

I 

For good response, the transmission channel should have a time constant shorter than the 
time constant of the data entering the channel; that is, 

data time constant ~ > - . _  - 

channel time constant 
(4 7) 

The time constant of the channel response is l/n-Bc from equation (2 ) ,  where Bc is the 
transmitting channel bandwidth. Substituting these results into equation (47) yields 

or  

4rBfe 2 

r (2q2  + E 2 )  

B =  C 

This expression is valid for all three types of sweep functions. For analyzers I and 
11, Bf is constant and equal to fL/2Q-, while for analyzer 111 the maximum value of 
Bf is used in equation (48); that is, Bf, max = fH/2Qmax. As a result, analyzer III re- 
quires substantially more bandwidth than analyzers I and II. The reason for the different 
bandwidth requirements is best understood by considering the power detector averaging 
time. In analyzers I and 11, the averaging time of the power detector is constant, while 
in analyzer III the averaging time is inversely proportional to frequency. Thus, a t  the 
higher frequencies the power detector in analyzer 111 responds much faster than the de- 
tector in the other systems. Providing the bandwi-dth to transmit the more rapid changes 
in power level from analyzer 111 accounts for the increased bandwidth. The channel band- 
width Bc is calculated for all three types of analyzers using the values of Bf, E ,  and 77 
of the previous sweep time examples. The values for Bc a re  given in table I for the 
following conditions: 
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TABLE I. - NUMERICAL EXAMPLES 

I 
II 
m 

Analyzer 

20 600 0.037 0.082 
1980 
1030 . 164 

Total sweep 
time, 

s ec  
tS , 

~ 

I 
I1 
III 

Transmitting 
channel 

bandwidth, 

& 

91. 6 
a. 9 
4.6 a2 

Telemetry 
bandwidth 

per channel, 

m 
&/channel 

Telemetry 
bandwidth 1 per channel 

for PCM system, 

( 2 ) p c M  
&/channel 

4.4 

1 
25 
25 
500 

Example 1 Example 2 

Lowest frequency analyzed, fL, Hz . . . . . . . . . . . . . . . . .  100 100 
Highest frequency analyzed, fH, Hz . . . . . . . . . . . . . . . .  2000 

Maximummechanical Q, Qmax . . . . . . . . . . . . . . . . . . .  10 5 

2000 
Percent error,  E . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 40 
Confidence level, 1-a, percent . . . . . . . . . . . . . . . . . . .  90 60 

Standardized random variable, q . . . . . . . . . . . . . . . . .  1.645 0.84 
Ratio of data time constant to channel time constant, r . . . . . . . .  71 ‘IT 

Example 1 in the table is impractical because of the long sweep times. In example 2, Bc 
for  all the analyzers shows that spectrum transmission results in a substantial bandwidth 
saving over time function transmission; that is, 1900 hertz of data has been reduced to 
less than 100 hertz. 

Mu 1 ti spect r u m Bandwidth Req ui r e  me nts 

Consider the transmission of the spectrums from many channels of wide-band data. 
Frequency multiplexing or time division multiplexing might be used to combine the spec- 
trums. Since the transmitting channel bandwidths, as calculated in the numerical ex- 

25 



amples, are so small, frequency stacking of the spectrum channels would be inefficient. 
More bandwidth would be used for channel separation than for information, and narrow, 
complex filters would be required. Time division multiplexing is more easily imple- 
mented. 

Consider the following sampling method. Assume each spectrum analyzer output to 
be band limited to frequencies less than Bc. Then from sampling theory, (ref. 12), the 
theoretical minimum sampling rate is 2B Thus, to multiplex m spectrum channels, 
2mBc samples per second are required.2C'The amplitudes of the 2mBc samples per sec- 
ond for m spectrum channels can be transmitted with an accuracy of about 3 percent; 
that is, e -3' by using a telemetry channel whose bandwidth is calculated from 

3 5  1 3. 5 (channel time constant) = - = - 
aBM 2mBc 

or 

BM=- 7mc 
71 

(49) 

The quantity %/m, the telemetry bandwidth per spectrum channel, may be used as a 
figure of merit for comparisons to other data transmission systems: 

2 2  2 m 277 + E  
m 

Values of BM/m were calculated for the two examples, and the results are given in 
table I. These results show that even after multiplexing, a large bandwidth saving still 
remains. 

2The use of the theoretical minimum sampling rate based on the frequency limit Bc 

The cut-off frequency of 
is sufficient in a practical system because of the frequency-limiting effects of the RC 
averager used on the power detector of the spectrum analyzer. 
the RC averager is B,/a. Thus, the frequency components in the analog signal repre- 
senting the spectrum are attenuated at frequencies above Bc/n. The lower frequency 
components of the signal, which comprise the major part of the signal, a r e  sampled many 
times per cycle, which in a practical system yields good reproduction of the sampled 
spectrum. 
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I 

If each sample were to be converted into a five- bit digital word, which would give an 
accuracy of about 3 percent, and an extra bit were added for synchronization, the bit rate 
for coding m spectrum channels would be 12mBc bits per second. It is a well-known 
rule in binary pulse transmission that through a low-pass channel that transmits up to a 
frequency of fd hertz, one can send 2fd pulses per second. Thus, for this binary- 
coded sampling. scheme (pulse code 
channel B /m is given by ( )PCM 

modulation) the multiplexed bandwidth per spectrum 

2 24r Bfe 
= 6Bc = 

n(2q2 + E2) 

(521 

Values of kM/m) are also contained in table I. The bandwidth equations (48), (51), 
PCM 

and (52) take into account only the bandwidth required for the transmission of the spec- 
trums. Any low frequencies not included in the spectrum analysis must be transmitted 
separately. 

for airborne use. In the two examples, analyzer 11 has a large bandwidth advantage 
(a factor of 20) and has a total sweep time less than twice that of analyzer LZI. Analyzer I 
has limited use because of its extremely long sweep times. 

On the basis of these bandwidth calculations, analyzer 11 appears to be better suited 

CONCLUSIONS 

The optimum frequency-time functions were developed for three types of swept fre- 
quency spectrum analyzers. The functions were optimized by tailoring the design to the 
characteristics of the expected signals. The analysis for the linear and the exponential 
sweep analyzers (analyzers I and 11, respectively) can be applied to systems that have 
already been developed. The frequency-time equation for the second-order sweep-rate 
spectrum analyzer (analyzer ITI) can be used as the basic design equation for the develop- 
ment of an improved spectrum analyzer having a short sweep time. 

The performance of in-flight spectrum analyzers on random data was calculated to be 
far short of the performance specifications desired. In order to obtain sweep times of the 
order of seconds, decreased resolution and/or reduced accuracy a r e  required. 

The exponential sweep spectrum analyzer w a s  judged to be the best spectrum ana- 
lyzer for in-flight use. Compared with the analyzer with the second-order sweep rate, 
the exponential sweep analyzer has only moderately longer sweep times (about two to one), 
requires less bandwidth (a ratio of 20 to l), and is less  complex. Both of the spectrum 
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analyzers with time-dependent sweep rates have sweep times about 10 times shorter than 
the constant sweep rate analyzer. 

Finally, the bandwidth per channel was calculated for the transmission of spectrums. 
Spectrum analysis showed substantial bandwidth savings over the transmission of wide- 
band data (at least 75 to 1). Many channels of spectrums can be transmitted over one 
wide-band channel of an IRIG FM/FM system. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, June 20, 1966, 
125- 24-03-03- 22. 
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APPENDIX - SYMBOLS 

transmitting channel bandwidth for one channel of continuous spectrum infor- 
BC 

Bf 

BM 

mation 

effective filter bandwidth (bandwidth of the ideal rectangular filter that passes 
the same power as the real filter when both are excited by white noise) 

telemetry bandwidth for m channels of sampled spectrums 

E\ multiplexed bandwidth per spectrum channel for PCM system ' 'PCM 

Bn minimum resolvable spectrum peak with center frequency fi 

ratioof B to Bn,min 

statistical expected value of y 

statistical second moment of y 

lower and upper frequency limits on effective bandwidth of analyzing filter 

analyzing filter center frequency 

highest frequency to be analyzed 

signal frequency being analyzed 

f C 

E[Yl 

E[Y21 

fa9 f b  

f C  

fH 

fi 

- sweep rate 
dt 

lowest frequency to be analyzed f L  

mixing frequency 

sweep rate constant 

fS 

K1  

m number of channels 

N number of samples taken to determine sample variance 

numerical constant that allows adequate filter response for periodic signals 

number of independent samples obtainable from band-limited white noise 

N1 

n 
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'[a < y < b] probability of a < y < b - -  - -  
average power in x(t) contained between frequencies fa  and fb 

average power out of filter of bandwidth Bf, spanning fa  to fb 

probability distribution of x(t) 

mechanical Q 

autoc or r elation function 

time constant of resistor-capacitor averaging circuit 

ratio of data time constant to channel time constant 

power spectral density 

exact value of power spectral density at fc  

estimated value of power spectral density at fc  

estimated value of average power spectral density between frequencies fa 
and fb  

lower and upper limits on confidence interval 

sample variance 

limit on integrations with respect to time; also used as averaging time for 
power detector 

time constant of filter response to sine wave 

detector averaging time 

signal period for periodic signals 

time 

total sweep time 

variance of x(t) 

normal random variable with mean p and standard deviation u 

specific values of chi-square random variable; the values a r e  those which 
give the desired confidence level 

signal (random o r  periodic) 



filter output 

standardized normal random variable with zero mean and a standard deviation of 
one 

fraction of measured values of the power spectral density that will lie outside the 
confidence interval 

percent e r ror  

standardized random variable that gives desired confidence level 

mean value 

true variance 

lead time in autocorrelation computation 

chi-square random variable with N- 1 degrees of freedom 

Subscripts : 

max maximum 

min minimum 
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